当前位置: > 外国文学名著 > 狭义与广义相对论浅说

序 简介

提到相对论,人们马上就会联想起一个伟大的名字:阿尔伯特·爱因斯坦。曾任英国皇家学会会长的汤姆孙1919年说:爱因斯坦的理论是“人类思想史中最伟大的成就之一”,“它不是发现一个外围的岛屿,而是发现整个科学新思想的大陆。”物理学家狄拉克认为爱因斯坦的引力理论“大概是(人类)已经作出的最伟大的科学发现”。说这些话的时候,正是天文观测精确地验证了爱因斯坦关于光线在引力场中会偏转的预言之时,这轰动了全世界。

爱因斯坦是什么人?他怎么能享有如此崇高的声望?

爱因斯坦(1879—1955)是个犹太人,生于德国。1900年他毕业于瑞士苏黎世工业大学。由于他具有独立思想和离经叛道的性格,大学一毕业就失业。两年后他在伯尔尼瑞士专利局找到技术员的固定职业。他利用业余时间在1905年3月到6月这4个月内,写了4篇论文,在物理学3个不同领域(辐射理论,分子运动论,力学和电动力学的基本理论)都分别取得了有历史意义的成就。其中的一篇《论运动物体的电动力学》,提出了根本不同于传统观念的空间、时间理论,这被他后来称为“狭义相对论”。这个理论只是在德国比较受人注意,其他绝大多数物理学家都不接受它。而爱因斯坦没有理会这些,继续他的研究,其间也有停顿,也有挫折,但到了1915年底,他已有了结论。第2年初,他写了一篇完整的总结性论文《广义相对论的基础》。

广义相对论是一种引力理论,以它思想的深湛、丰富和形式的完整、美丽而令人赞叹。可是在它产生以后,能够验证它的实验事实却非常之少,有人甚至慨叹说:“爱因斯坦的广义相对论是何等美丽的理论,可是实验却少到令人羞愧。”还有人认为,广义相对论是理论物理学家的天堂,实验物理学家的地狱。最初的轰动效应过去了,广义相对论一度成为冷门,但随着实验手段的进步,它又形成研究的热潮。

爱因斯坦是获得过两次诺贝尔奖的伟大的科学家。第一次获奖是因为光子理论,第二次才是相对论。虽然他已发表了狭义相对论的论文,他仍然愿意写一些通俗的读物,把这一20世纪最伟大的科学发现介绍给更多的人。《狭义与广义相对论浅说》这本小书是1916年,即广义相对论发表那一年就写了的,他显然十分喜欢这项工作,不断地修订再版,直到他去世前3年,即1952年,出版了它的第15版。

虽然这本书是通俗读物,作者选取的事例——火车、箱子——也易于理解,但爱因斯坦是按照严格的逻辑推出它的结论的。

下面我们来看看爱因斯坦在何种条件下发现了这样的伟大理论。

19世纪末20世纪初,伽利略和牛顿创立的经典力学受到了强有力的挑战,物理学的宏伟大厦摇摇欲坠,为解答以太之谜,洛伦兹与彭加勒都做出了巨大努力,他们在一只手已叩响相对论的大门时停下了。他们囿于牛顿关于绝对时间和绝对空间的观念,不能做出根本性的突破。青年爱因斯坦没有思想包袱,有的是独立的批判精神,自然界的统一性的思想,他不能容忍自然现象的统一性被破坏。

早在200年前,伽利略就发现,所有的惯性系,对于表述力学定律都是同样有效的,平等的,不存在任何特殊的惯性系,这就是说,任何力学实验都无法辨别惯性系本身的运动状态。这种运动的相对性,在古典力学中普遍存在,但在麦克思韦电动力学中不能成立,因为它只适用于静止的坐标系。爱因斯坦认为,这种不对称不应是自然界所固有的,问题大概出在我们了解自然界的概念和理论上。他发现,只要把作为古典物理学基础的空间和时间概念进行适当的修改,这种“不对称”就可以消除。他在一个最平凡、最简单,也最不成问题的问题上找到突破口,这就是所谓“同时性”问题。他设计了一个纸上的实验证明,两个在空间上分开的事件的所谓“同时”,取决于它们相隔的空间距离和光信号的传播速度,在静止的观察者看来是同时的两个事件,在运动的观察者看来就不可能是同时的。这就是同时性的相对性。由此可见,时间与空间并不是井水不犯河水各不相干,而是存在着本质的联系,并且都同物质的运动有关。对于不同的惯性系,时间的量度不可能是相同的。那么,牛顿所认为的同空间和物质运动无关的,对任何惯性系都一样的“绝对时间”是不存在的。同样地,同物质运动无关的静止的“绝对空间”也是不存在的。既如此,爱因斯坦干脆地宣布,根本不存在所谓“以太”。这就完全改变了人们的时空观。

爱因斯坦着手建立一个统一的物理理论。他把伽利略力学运动的相对性原理扩展开来,使之包括所有物理定律。把它提升为公理;又把观测和实验得来的光速不变也提升为公理。如果两者同时成立,不同的惯性系的各个坐标之间必然存在一种确定的数学关系,这就是洛伦兹变换。通过这种变换,他推导出,运动的尺子要缩短;运动的钟要变慢;任何物体的运动速度都不能超过光速。由这个理论来看,以前的矛盾都解决了,古典力学定律成了物体在低速运动时的一种极限情况。自然现象在运动学方面显示出统一性。这就是“狭义相对论”。

相对论不仅引起了时空观的革命,也带来了整个物理学的革命,产生了深远的影响。其中最突出的,是关于物体的质量和能量相对性的推论,即E=mc2。这为以后原子弹的制造、核能的和平利用打下了理论基础。

1916年发表的《广义相对论的基础》则完成了现代物理学大厦的封顶工作。爱因斯坦发现,现实的有物质存在的空间,不是平坦的欧几里德空间,而是弯曲的黎曼空间;空间的弯曲程度取决于物质的质量及其分布状况,空间曲率就体现为引力场的强度。这就在更深一层意义上否定了牛顿的绝对时空观。广义相对论实质上是一种引力理论,它把几何学与物理学统一起来,用空间结构的几何性质来表述引力场。它同牛顿的引力论有本质的不同,但在日常人们接触到的现象中却分辨不出两者结果的差异。爱因斯坦提供了三个可供实验验证的推论。第一是水星近日点的进动,这在当时就得到完满解决。第二,在强引力场中,时钟要走得慢些,因此从巨大质量的星体表面射到地球上的光的谱线,必定显得要向光谱的红端移动。这在1925年得到观测验证。第三,光线在引力场中的偏转。这在第一次世界大战结束后的对日全食的观测中得到了验证,使广义相对论顷刻间闻名于世。

在这本书的第三部分,爱因斯坦应用他的理论对宇宙的模式进行了一些探讨。

爱因斯坦不仅在科学上做出了如此杰出的贡献。他热爱和平、曾经给罗斯福总统写信,敦促美国研制原子弹,赶在法西斯成功之前,用以结束战争。他性格既骄傲又谦虚,在自己的领域他很自负。当以色列国成立时,国家邀请他出任总统,他拒绝了。他还是一位比较出色的小提琴演奏家,在思考的间隙,他会在美妙的琴声中迷醉一会儿,这也许是使他的理论变得那么美丽的原因之一。

轩宇阅读微信二维码

微信扫码关注
随时手机看书